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   Abstract  

 

We introduce the 3D Object Detection Dataset, public dataset for 3D object detection and pose estimation with a strong focus on 

objects, settings, and requirements that are realistic for industrial setups. Contrary to other 3D object detection datasets that often 

represent scenarios from everyday life or mobile robotic environments, our setup models industrial bin picking and object 

inspection tasks that often face different challenges. Additionally, the evaluation citeria are focused on practical aspects, such as 

runtimes, memory consumption, useful correctness measurements, and accuracy. The dataset contains 28 objects with different 

characteristics, arranged in over 800 scenes and labelled with around 3500 rigid 3D transformations of the object instances as 

ground truth. Two industrial 3D sensors and three high-resolution grayscale cameras observe the scene from different angles, 

allowing to evaluate methods that operate on a variety of different modalities. We initially evaluate 5 different methods on the 

dataset. Even though some show good results, there is plenty of room for improvement. The dataset and the results are publicly 

available and we invite others to submit results for evaluation and for optional inclusion in the result lists on the dataset’s website. 

Keyword- 3D Object, Data Set 
__________________________________________________________________________________________________ 

I. INTRODUCTION 

Public datasets are a vital tool for the computer and ma- chine vision research community. For researchers, they al- low a fair and 

easy comparison with prior art without the need to either acquire one’s own dataset or to evaluate all prior art methods oneself. For 

users, datasets help to quickly get an overview over the state of the art in a particular field. 

As large-scale datasets become increasingly available, evaluation against them and obtaining reasonable results becomes 

increasingly important for the publication of new methods. Therefore, indirectly, datasets and their evaluation criteria can steer the 

direction of research and shape the requirements for new methods. It is thus even more important to have datasets that represent 

realistic scenarios, with evaluation criteria that focus not only on overall performance, but also on practical issues such as parameter 

selection and computational costs. 

Quite often, the objects and setups of previous datasets for 3D object detection model environments from house-holds, 

offices, or mobile robot applications such as ware-house navigation. While these scenarios are important from both a research and 

application point of view, we found that industrial applications, such as bin picking or surface and defect inspection, have quite 

different characteristics that are not modelled by the existing datasets. This includes different 3D shapes, different kinds of sensors 

and modalities, and different kinds of object placements. As a result, methods that perform well on existing datasets sometimes 

show quite different results when applied to industrial scenarios. 

Because of the above-mentioned shortcomings, we introduce a new dataset, the 3D Object Detection Dataset for the 

detection and pose estimation of 3D objects, which strongly focuses on industrial scenarios. The dataset contains 28 rigid objects 

with different shapes and surface characteristics, arranged in over 800 scenes, labeled with their rigid 3D transformation as ground 

truth. The scenes are observed by two industrial 3D sensors and three grayscale cameras, allowing evaluating methods that work 

on 3D, image, or combined modalities. Grayscale cameras were chosen since they are much more prominent in industrial setups. 

The objects sometimes are observed alone and sometimes in a heap to simulate bin picking. 

For the evaluation procedure, we focus on properties that are important for practical applications. This includes com- 

paring the full 3D rigid transformation instead of just a bounding box, in a symmetry-aware manner, as well as explicitly including 

computational costs in the form of training runtime, model size, detection runtime, and memory consumption. 

The dataset is available for download. While some of the ground truth transformations are also available, most are not 

made publicly available to prevent overfitting methods with excessive parameter tuning. For evaluation, the results can be uploaded 

and optionally be included in the result list of the website. 

II. RELATED WORK 

Several datasets for 3D object detection were introduced in the past. For a comprehensive review over RGB-D related datasets, 

please refer to the work of Firman [5]. An-other discussion of a subset of those datasets that are especially relevant to 3D pose 

estimation can be found in the Work of Hodanˇ et al. [7]. 
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Since the introduction of the Prime sense sensor family, especially in the form of Microsoft’s Kinect v1 and Asus Xtion, 

several datasets were acquired using these sensors. We believe that even though this sensor class allows an inexpensive and rapid 

acquisition of RGB-D data and was important for the progress of 3D and multimodal object detectors, its characteristics are less 

relevant for industrial scenarios, where typically different kinds of 3D sensors are used. Additionally, the RGB-camera uses a 

Bayer filter, which makes accurate and sub-pixel precise edge extraction difficult due to demo saicing effects. 

Recently, Hodanˇ et al. [7] introduced the T-LESS dataset, a challenging dataset of texture less objects, ar- ranged in close 

proximity, and acquired with a Prime sense and an RGB sensor. T-LESS has a similar focus as the dataset introduced in this work 

and is similar in design and evaluation. Contrary to it, our dataset features objects with wider characteristics (especially regarding 

planarity, size and complexity) and sensors with a stronger industrial focus. 

III. THE DATASET 

The overall target was to realistically cover as many applications as possible. For this, multiple sensors and objects were selected, 

and objects were arranged in different ways to cover single-instance (conveyor belt, surface inspection), multiple-instance (bin 

picking), and cluttered scenarios. 

Sensors each scene is observed by two industrial stereo 3D cameras and three grayscale cameras. All sensors were 

arranged such that their field of view was approximately the same and calibrated to obtain their intrinsic parameters as well as their 

relative poses. 

– High-Quality 3D: A multi-shot, wide-baseline 3D stereo sensor, providing a range (Z) image, X and Y images, as well as a 

grayscale image with the same viewpoint as the range image. The sensor uses mul- tiple random projected patterns and 

reconstructs the scene using a space time stereo approach with an ac- curacy of around 100 μm. 

– Low-Quality 3D: Similar to the High-Quality 3D sensor, but with a shorter baseline, a wider field of view, and fewer shots 

per scene. Because of this, the reconstruction is noisier, with an accuracy of around 1– 2 mm. While data of higher quality is 

always desirable, economic constraints often lead to setups where com- promises between cost and data quality must be made. 

– Cameras: Three high-resolution cameras (≈ 8 MP, f = 50mm) capturing grayscale images. Each scene was captured twice, 

once with and once without projecting a random pattern. The images with the projected patterns can be used for stereo 

reconstruction. 

Fig. 1 shows the images of an example scene. 

Methods can use any combination of the sensors. This allows evaluating methods that operate on intensity images, on range data, 

on 3D point clouds, or on multimodal data alike. 

Calibration the two 3D sensors were factory-calibrated. Additionally, the two 3D sensors and the three grayscale cameras were 

calibrated as described in [11], yielding a calibration error of less than 0.2 px. 

Objects A total of 28 objects were selected, with diameters ranging from 2.4 cm to 27 cm. The objects were selected such 

that they cover a range of different values w.r.t. surface reflectance, symmetry, complexity, flatness, detail, compactness, and size. 

Fig. 3 shows the used objects, along with their names. Tab. 1 lists some of the key properties of the different objects. Multiple 

instances of each object are available, and for each object, scenes with only a single and scenes with multiple instances are available. 

For all objects, manually created CAD models are available for training the detection methods. Note that the dataset does not 

provide any other training data in form of range or intensity images. 

Acquisition Protocol the objects were captured in three types of scenes: scenes containing only a single instance of the 

object, without clutter; scenes containing multiple in-stances of the object, without additional clutter; and scenes containing both 

multiple instances of the target object and clutter. 

Each scene was acquired once with each of the 3D sensors, and twice with each of the grayscale cameras: once 

 
Fig. 1: Example scene of the dataset from all sensors. Top row: Grayscale cameras. Bottom row: Z and grayscale image of the High- Quality 

(left) and Low-Quality (right) 3D sensor 
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Model Diameter [cm] Symmetries No. scenes No. instances Size ratio 

adapter plate square 6.4 No 27 87 0.35 

adapter plate triangular 5.1 Yes 30 117 0.31 

box 14.2 Yes 25 75 0.49 

bracket big 13.9 Yes 48 161 0.72 

bracket planar 15.9 Yes 39 177 0.02 

bracket screw 8.5 No 30 132 0.37 

cap 3.9 Yes 33 180 0.93 

car rim 6.9 Yes 34 131 0.59 

clamp big 9.5 Yes 27 63 0.49 

clamp small 5.6 No 21 144 0.30 

connector planar 13.8 Yes 27 75 0.02 

cylinder 10.8 Yes 18 105 0.40 

engine part bearing 12.8 No 27 72 0.41 

engine part cooler round 10.3 Yes 36 132 0.47 

engine part cooler square 11.4 No 33 96 0.83 

engine part cover 19.3 No 21 30 0.35 

filter 7.8 Yes 30 72 0.67 

fuse 10.8 Yes 35 100 0.52 

handle 12.1 Yes 30 177 0.08 

injection pump 12.2 No 30 72 0.39 

multi bracket 17.1 No 39 129 0.37 

punched rail 26.7 No 23 65 0.08 

screw 5.7 Yes 9 48 0.30 

screw black 6.5 Yes 24 105 0.50 

star 4.9 Yes 54 381 0.12 

tee connector 6.7 No 39 186 0.39 

thread 5.6 Yes 24 72 0.38 

washer 2.4 Yes 6 306 0.08 

Table 1: Object list with properties. A list of the 28 objects in the dataset, along with some of their properties. Size ratio is the ratio of the 

smallest to the largest side of an axis-aligned bounding box around the model, indicating the planarity of the object 

 
Fig. 2: Annotated picture of the setup 

The top shows the two 3D sensors and the three grayscale cameras that were used for acquisition. The sensors were static 

and their relative position calibrated. Below, the object placement area is visible. A calibrated turn table was used to transfer the 

ground truth between scenes by using a total of three turntable rotations per placement. With and once without a random projected 

pattern. The objects were arranged on a turntable with calibrated movement. Multiple scenes were acquired for each arrangement 

by turning the table. This allowed the transfer of ground truth between the rotations. 

Ground Truth The ground truth was labelled using a semi-manual approach based on the 3D data of the high- quality 3D 

sensor. Each object instance  was approximately segmented by hand, followed by several iterations of manually running ICP2, 

tuning its parameters and refining the start pose were performed until both a good score and a visually correct result was obtained. 
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The corresponding ground truth poses were transferred to the scenes obtained by rotating the turntable by using the calibrated turn 

table positions. 

IV. EVALUATION CRITERIA 

Pose Industrial manipulation and inspection tasks usually require an exact rigid 3D transformation between the scene and the 

model. In order to evaluate the practical usefulness of the results, we refrain from using bounding box or surface overlaps as 

correctness measure and use a pose-based evaluation instead. When comparing a detected pose with a ground truth pose, we use 

the maximum distance a point on the model surface is away from its ground truth location, normalized by the size of the model. 

Formally, given a model represented by a set of points 

M3 and its diameter diam(M ) = maxv1,v2 M |v1 − v2|2, two transformations T1 and T2 have the distance 

d
P 

(T1 , T2) =  maxx M |T1x − T2x|2            (1) 

diam(M ) 

This is similar to the average distance measure in [6], but in- variant against different samplings and internal complexity 

of the model. Due to the normalization, it is also invariant w.r.t. scaling and model size, allowing a comparison of the quality of 

matches between different objects. 

We additionally measure the accuracy of the translation of the model’s centre point cM as 

dT (T1, T2) = |T1cM − T2cM |2     (2) 

and the error in the rotation as 

        d
R

(T1, T2) = (T1
−1

T2)             (3) 

Where (T) is the rotation angle of the rotational part of T . Different applications have different requirements w.r.t the accuracy of 

the detected poses. For example, surface defect detection requires a very accurate pose, while grasp-ing an object with a vacuum 

suction actuator might work even if the pose is somewhat off. To account for this, we use different thresholds of d
P 

when classifying 

the correctness of results. 

Symmetries Since some of the objects exhibit strong rotational or discrete symmetries that the object detection methods cannot 

possibly detect, we exclude such symmetries from the evaluation. If a model M has a set of symmetry transformations SM , with I 

SM and 

                     T   SM : M ≈ T M,            (4) 

The distance measure becomes 

 
The errors in translation and rotation are handled accordingly. We model two kind of symmetries: continuous rotational 

symmetries, for objects such as cylinder or cap, and 

 
                        Adapter plate square        adapter plate triangular                     box                                      bracket big 

 
Bracket planar  bracket screw                       cap   car rim 
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Clamp big                clamp small              connector plate                    cylinder 

 
Engine part bearing engine part cooler round engine part cooler square engine part cover 

 
    Filter                                    fuse                                      handle                           injection pump                                                                                       

 
Multi bracket               punched rail                       screw                           screw black 

 
      Star                     tee connector                               thread                                washer 

Fig. 3: Images of the 28 objects used in the dataset 

The objects were selected to show different characteristics in terms of surface (reflecting vs. lambertian), symmetry (no 

vs. full rotational symmetry), complexity (primitive shapes vs. complex objects), flatness (flat vs. voluminous), details (no vs. very 

fine details on surface), compactness (long vs. compact), and size (diameters from 2.4 cm to 27 cm) 

Sets of discrete symmetric poses for objects such as box or car rim. Objects that are almost symmetric and where sensors 

were unable to distinguish the symmetries, such as screw and screw black, are also modelled to be rotationally symmetric. 

Contrary to the evaluation criteria proposed in [8], which measures relative surface overlaps of detection and ground truth, 

we decided to include symmetry explicitly. We believe that for applications such as bin picking, detecting an incorrect pose, even 

if almost indistinguishable from the correct point for the particular viewpoint, is dangerous from an application perspective. It also 

allows methods that oper- ate on the data of multiple sensors to take advantage of those different viewing directions to resolve 

such ambiguity. 

Detection Rate To compute the detection rate given a set of results R, a set of ground truth transformations GT , and a 

threshold t for the distance d
P 

, we first search, for each result transformation TR R, the best matching ground truth TGT GT where 

d
P 

(TR, TGT ) < t. If multiple ground truth transformations match this criterion, the one with the smallest distance is used. Each 

ground truth transformation is assigned to at most one result transformation, again the one with the smallest distance. Because of 

this, if R con-tains duplicate results, only the best is classified as correct, while all others are false positives. 

The detection rate used in the evaluation is then computed as the ratio of correctly matched transformations in R vs. the 

total number of ground truth transformations, |GT |. The false positive rate is the number of unmatched result transformations vs. 

the total number of result transformations |R|. 

Computational Costs and Metadata Since runtime is an important factor in real-world applications, for all evaluated 

methods, we also measure the training and detection times, model size, and memory requirements during detection. Since runtimes 

can heavily depend on the system, the used components (CPU vs. GPU) and the effort spent for the implementation, we also 

provide a free-form text field where the implementation and the used system can be summarized. 
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Priors, Parameters, and Evaluation Rules to enable an evaluation that is as realistic and fair as possible, evaluations on 

the dataset should obey the following rules regarding their priors and parameterization. 

Per-Model Parameters: Parameters may be set on a per-model basis. All parameters that are not shared between models 

must be summarized in text form to obtain an overview of the usability of the method. 

Per-Scene Parameters: Parameters may not be tuned on a per-scene basis, i.e., the detection parameters must be constant 

for a particular object. The only prior allowed on a per-scene basis is the number of instances contained in the scene, which is 

provided along with the dataset. The background plane may be removed from scenes, if documented accordingly. 

Provided Parameters: In addition to the CAD models of the objects and the number of instances per scene, the distance 

range (i.e., the range of z-values of the model centers within the scene) are provided to allow training methods that require, for 

example, synthetic renderings of the object. Note that the rotation range is not limited of course, evaluations can be valuable even 

when not strictly adhering to the rules above. Such cases, however, should be summarized, and the corresponding descriptions will 

be published along with the results on the website. 

V. EVALUATION 

Along with the dataset, this work also provides evaluations of several methods on the dataset. This allows a first insight into the 

difficulty of the dataset given state of the art detection methods. Note that additional and more detailed results will be found on the 

dataset’s website. 

A. Evaluated Methods 

Shape-Based 3D Matching (S2D) An optimized implementation of [12], which detects 3D objects in 2D images. A template-based 

matching approach is used, where the object is rendered from multiple viewpoints to create tem- plates for different orientations. 

This method does not use any 3D image data. Poses where flat objects are seen from the side are excluded during the training to 

avoid degenerated views. Additionally, the image contrast and the number of trained image levels were adapted on a per-object 

basis. 

Point-Pair Voting (PP3D) An optimized implementation of [4], which detects objects in 3D point clouds by using a local 

Hough transform and point pairs as features. The method was augmented with a point-to-plane ICP [2]. Identical parameters were 

used for all models, both during traiing and evaluation. For detection, the background plane was removed from the scenes. 

Point-Pair Voting with 3D edges (PP3D-E) Based on [4], we implemented a method that, similar to [3], per- forms the 

voting not only for pairs of surface points, but also for pairs of surface and edge points. This allows the detector to optimize both 

the surface overlap and the alignment of 3D edges. Identical parameters were used for all models, both during training and 

evaluation. 

Point-Pair Voting with 3D edges and 2D refinement (PP3D-E-2D) As another extension of the previous method, we 

extended the refinement (ICP) step such that it not only optimizes the 3D point-to-plane distances between scene and model, but 

also the alignment of reprojected model edges and 2D image edges, i.e., a multimodal refinement. Identical parameters were used 

for all models, both during training and evaluation. 

Efficient RANSAC (RANSAC) we evaluated the publicly available variant of [9, 10], using the 3D data only. For the 

evaluation, the background plane was removed to obtain reasonable runtimes. The method also includes an ICP refinement. 

Identical parameters were used for all models and scenes. 

For RANSAC, we used the publicly available C++- implementation. For the other methods, the optimized 

implementations of the HALCON machine vision library [1], version 13.0.1, were used. 

B. Results 

As a main result, Tab. 2 shows the Top-1 detection rate of the different methods, evaluated on different thresholds between detected 

transformations and ground truth. Tab. 3 shows the corresponding detection rate of the first n results, where n is the number of 

labelled instances per scene. Note that the Top-n-rate is significantly lower than the Top-1-rate, indicating that it is much easier to 

find any instance instead of all instances. 

Tab. 4 shows the mean error of translation and rotation for all transformations labelled as correct, using different 

thresholds. 

Fig. 4 shows the Top-1 detection rate vs. the average detection time per labelled instance. Note that even though the 

PP3D-E method has a good performance, it also has a rather high runtime, making it less qualified for real-world applications. 

Note also that all methods used the CPU only. 

When comparing the performance of S2D to that of the other methods, it should be noted that it is the only evaluated approach that 

does not use 3D input data. Furthermore, we noticed that although many results of the S2D seemed to be correct when projecting 

them into the images, they resulted in large values for d
P 

, and hence were classified as false positives. The main reason is that 

because of the large focal lengths, a small error in the estimated object scale in the image or a small error in the size of the CAD 

model result in large errors in the z coordinates. 
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VI. DISCUSSION 

This paper introduces the 3D Object Detection Dataset for 3D object detection and poses estimation. The extensive dataset is 

focused on 
Method < 1% < 3% < 5% < 10% 

PP3D 0.07 0.48 0.66 0.75 

PP3D-E 0.11 0.51 0.68 0.77 

PP3D-E-2D 0.04 0.42 0.66 0.81 

S2D 0.02 0.20 0.34 0.47 

RANSAC 0.07 0.23 0.33 0.43 

Table 2: Top-1 detection rate 

For each method, the best result (according to each method’s confidence score) for each object and scene is used and compared 

against the ground truth. The match is classified as correct, if the smallest distance dP to any of the ground truth transformations 

is closer than the given threshold. Different thresholds simulate different requirements on the accuracy of the match. This simulates 

a pick any strategy, where for further processing, at least one instance must be detected 
Method < 1% < 3% < 5% < 10% 

PP3D 0.04 0.29 0.45 0.53 

PP3D-E 0.05 0.34 0.50 0.59 

PP3D-E-2D 0.02 0.26 0.46 0.61 

S2D 0.01 0.10 0.17 0.25 

RANSAC 0.03 0.13 0.19 0.27 

Table 3: Top-N detection rate 

For each object and scene, the first N results are compared against the ground truth, where N is the number of labeled 

object instances in the scene (see Tab. 2 for details. 

 
Fig. 4: Matching time vs average detection rate 

The average detection time per instance is plotted against the Top-1 detection rate. A threshold of dp < 5% was used for 

classifying a result as correct. 

Modelling industrial application: Setup, Sensors, objects and evaluation criteria were selected to most closely match 

scenarios found in real-world applications. 

A first evaluation on five different methods shows their characteristics, strengths, and weakness for different object 

classes. It also highlights that the dataset is not yet maxed out by existing methods, and that there is plenty of  

 

Method 
d

P 
< 1% 

dT dR 
d

P 
< 3% 

dT dR 
d

P 
< 5% 

dT dR 
d

P 
< 10% 

dT dR 

PP3D 0.55% 0.31° 1.28% 0.58° 1.61% 0.72° 1.95% 0.91° 

PP3D-E 0.58% 0.32° 1.20% 0.54° 1.54% 0.69° 1.83% 0.87° 

PP3D-E-2D 0.59% 0.40° 1.25% 0.75° 1.68% 0.97° 2.06% 1.25° 

S2D 0.56% 0.31° 1.41% 0.58° 1.89% 0.81° 2.64% 1.12° 

RANSAC 0.48% 0.31° 1.06% 0.54° 1.39% 0.83° 1.99% 1.52° 

Table 4: Top-1 pose error 
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For each method, the first result for each object and scene is used and compared against the ground truth, yielding the 

relative translation error dT and the rotation error dR. For most methods, the main source of error comes from the translation, not 

from the rotation. 
Model PP3D PP3D-E PP3D-E-2D S2D RANSAC 

adapter plate square 0.58 0.58 0.56 0.06 0.11 

adapter plate triangular 0.64 0.63 0.44 0.01 0.07 

box 0.69 0.78 0.80 0.39 0.44 

bracket big 0.53 0.65 0.65 0.38 0.51 

bracket planar 0.15 0.23 0.24 0.37 0.20 

bracket screw 0.02 0.04 0.02 0.00 0.05 

cap 0.82 0.80 0.69 0.06 0.00 

car rim 0.48 0.49 0.36 0.07 0.42 

clamp big 0.46 0.39 0.38 0.51 0.33 

clamp small 0.28 0.31 0.26 0.09 0.00 

connector planar 0.24 0.37 0.38 0.30 0.46 

cylinder 0.72 0.73 0.74 0.24 0.86 

engine part bearing 0.85 0.87 0.75 0.34 0.00 

engine part cooler round 0.81 0.84 0.67 0.74 0.26 

engine part cooler square 0.44 0.52 0.39 0.00 0.12 

engine part cover 0.85 0.83 0.82 0.43 0.67 

filter 0.10 0.10 0.05 0.01 0.24 

fuse 0.07 0.54 0.41 0.82 0.00 

handle 0.60 0.67 0.73 0.03 0.21 

injection pump 0.71 0.74 0.60 0.08 0.33 

multi bracket 0.65 0.78 0.77 0.45 0.53 

punched rail 0.37 0.38 0.39 0.06 0.36 

screw 0.30 0.17 0.03 0.00 0.00 

screw black 0.30 0.16 0.19 0.07 0.32 

star 0.36 0.60 0.64 0.25 0.29 

tee connector 0.78 0.66 0.55 0.16 0.07 

thread 0.33 0.30 0.33 0.12 0.36 

washer 0.04 0.03 0.04 0.00 0.00 

Table 5: Top-N detection rates per object 

A threshold of dP < 5% was used for classifying a result as correct room for improvement. 

We hope that this dataset encourages others to consider industrial challenges during the design and development of new 

methods, and that it helps to identify well- performing existing methods. 
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